主页 > 百科知识 > 秩和检验原理

秩和检验原理

时间:2025-02-11 20:36:32 浏览量:

秩和检验是用秩和作为统计量进行假设检验的方法。

秩和检验(rank sum test)又称顺序和检验,它是一种非参数检验(nonparametric test)。它不依赖于总体分布的具体形式,应用时可以不考虑被研究对象为何种分布以及分布是否以知,因而实用性较强。

在实践中常常会遇到以下一些资料,如需比较患者和正常人的血清铁蛋白、血铅值、不同药物的溶解时间、实验鼠发癌后的生存日数、护理效果评分等,我们将非参数统计中一种常用的检验方法--秩和检验,其中“秩”又称等级、即上述次序号的和称“秩和”,秩和检验就是用秩和作为统计量进行假设检验的方法。

秩和检验的背景

在总体分布任意的情形下,检验配对的试验数据所在总体的分布位置有无显著差异,往往可以利用符号检验的方法实现。但是符号检验只考虑差数的正负号,而不考虑差数的绝对值差异,会导致部分试验信息损失,结果较为粗略。

为了避免符号检验方法的这一缺陷,Wilcoxon提出了一种改进方法,称为Wilcoxon秩和检验(rank sum test)。这种方法同时考虑了差异的方向和差异的大小,较之符号检验更为有效。而对于成组的试验数据所在总体的分布位置有无差异,也可以采用类似的方法进行检验。

秩和检验是通过将所有观察值(或每对观察值差的绝对值)按照从小到大的次序排列,每一观察值(或每对观察值差的绝对值)按照次序编号,称为秩(或秩次)。

对两组观察值(配对设计下根据观察值差的正负分为两组)分别计算秩和进行检验。除了比较各对数据差的符号外,这种方法还进一步比较了各对数据差值大小的秩次高低,因此其检验效率较符号检验为高。

TAG: 秩和检验

© 转乾企业管理-上海店铺装修报建公司 版权所有 | 黔ICP备2023009682号

免责声明:本站内容仅用于学习参考,信息和图片素材来源于互联网,如内容侵权与违规,请联系我们进行删除,我们将在三个工作日内处理。联系邮箱:303555158#QQ.COM (把#换成@)