主页 > 百科知识 > 向量积化和差公式推导

向量积化和差公式推导

时间:2025-02-02 03:01:22 浏览量:

积化和差公式是:

sinαcosβ=【sin(α+β)+sin(α-β)】/2

cosαsinβ =【sin(α+β)-sin(α-β)】/2

sinαsinβ=【cos(α-β)-cos(α+β)】/2

cosαcosβ=【cos(α+β)+cos(α-β)】/2

和差化积以及积化和差公式的推导非常简单。只要掌握

sin(α+β)、sin(α-β)、cos(α+β)、cos(α-β)

这种最基本的三角函数展开公式,就能轻松掌握8个公式的推导

首先、下面这几个都是高中的内容了,要熟稔于心

sin(α+β)=sinαcosβ+cosαsinβ ①

sin(α-β)=sinαcosβ-cosαsinβ ②

cos(α+β)=cosαcosβ-sinαsinβ ③

cos(α-β)=cosαcosβ+sinαsinβ ④

我们看积化和差公式,我们要找的积是

sinαcosβ、sinαsinβ这种。

看①②两个式子,sinαcosβ当作x cosαsinβ当作y。那么①②两个式子就相当于一个方程组了,那么很容易就能解出sinαcosβ, cosαsinβ。同理式子 ③ ④也是

于是得到积化和差的公式

sinαcosβ=【sin(α+β)+sin(α-β)】/2

cosαsinβ =【sin(α+β)-sin(α-β)】/2

sinαsinβ=【cos(α-β)-cos(α+β)】/2

cosαcosβ=【cos(α+β)+cos(α-β)】/2

扩展资料:

得到积化和差的公式后,只要在做一个小的变换就能得到和差化积的公式了。令积化和差公式中的α+β=a,α-β=b。

则,α=(a+b)/2 β=(a-b)/2

积化和差公式改写为

sin[(a+b)/2]cos[(a-b)/2]=[sina+sinb]/2

cos[(a+b)/2]sin[(a-b)/2]=[sina-sinb]/2

sin[(a+b)/2]sin[(a-b)/2]=[cosb-cosa]/2

cos[(a+b)/2]cos[(a-b)/2]=[cosa+cosb]/2

然后把右边式子的/2移到左边去,把a用字母α,b用字母β代替。

© 转乾企业管理-上海店铺装修报建公司 版权所有 | 黔ICP备2023009682号

免责声明:本站内容仅用于学习参考,信息和图片素材来源于互联网,如内容侵权与违规,请联系我们进行删除,我们将在三个工作日内处理。联系邮箱:303555158#QQ.COM (把#换成@)