反函数基本公式
时间:2024-12-29 23:52:01
浏览量:
反函数运算公式
反函数常用公式:arcsin(-x)=-arcsinx,arccos(-x)=π-arccos,arctan(-x)=-arctanx,arccot(-x)=π-arccotx等。
一般来说,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x=g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作x=f-1(y)。
反函数x=f-1(y)的定义域、值域分别是函数y=f(x)的值域、定义域。
最具有代表性的反函数就是对数函数与指数函数。
设有函数,若变量y在函数的值域内任取一值y时,变量x在函数的定义域内必有一值x与之对应,所以,那么变量x是变量y的函数.这个函数用来表示,称为函数的反函数.(1) 由原函数y=f(x)求出它的值域; (2) 由原函数y=f(x)反解出x=f-1(y);(3) 交换x,y改写成y=f-1(x);
(4) 用f(x)的值域确定f-1(x)的定义域.我们知道,函数y=f(x)若存在反函数,则y=f(x)与它的反函数y=f-1(x)有如下性质:
若y=f-1(x)是函数y=f(x)的反函数,则有f(a)=bf-1(b)=a.
这一性质的几何解释是y=f(x)与其反函数y=f-1(x)的图象关于直线y=x对称.
TAG:
常用反函数公式大全