主页 > 百科知识 > 线性方程组的通解

线性方程组的通解

时间:2024-11-29 19:58:48 浏览量:

通解可以运用特征线法,分离变量法和特殊函数法。

通解是线性方程组的解的一般形式,又称为一般解。

方程依靠等式各部分的关系,和加减乘除各部分的关系(加数+加数=和,和-其中一个加数=另一个加数,差+减数=被减数,被减数-减数=差,被减数-差=减数,因数×因数=积,积÷一个因数=另一个因数,被除数

÷除数=商,被除数÷商=除数,商×除数=被除数)。

非齐次线性方程组解法

非齐次线性方程组Ax=b的求解步骤:

(1)对增广矩阵

B施行初等行变换化为行阶梯形。若R(A)<R(B),则方程组无解。

(2)若R(A)=R(B),则进一步将B化为行最简形。

(3)设R(A)=R(B)=r;把行最简形中r个非零行的非0首元所对应的未知数用其余n-r个未知数(自由未知数)表示,并令自由未知数分别等于C1,C2……,Cn-r,即可写出含n-r个参数的通解。

© 转乾企业管理-上海店铺装修报建公司 版权所有 | 黔ICP备2023009682号

免责声明:本站内容仅用于学习参考,信息和图片素材来源于互联网,如内容侵权与违规,请联系我们进行删除,我们将在三个工作日内处理。联系邮箱:303555158#QQ.COM (把#换成@)